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ABSTRACT
We introduce and investigate a natural extension of Dung’s well-
known model of argument systems in which attacks are associated
with a weight, indicating the relative strength of the attack. A key
concept in our framework is the notion of an inconsistency bud-
get, which characterises how much inconsistency we are prepared
to tolerate: given an inconsistency budget β, we would be prepared
to disregard attacks up to a total cost of β. The key advantage of
this approach is that it permits a much finer grained level of analy-
sis of argument systems than unweighted systems, and gives useful
solutions when conventional (unweighted) argument systems have
none. We begin by reviewing Dung’s abstract argument systems,
and present the model of weighted argument systems. We then
investigate solutions to weighted argument systems and the associ-
ated complexity of computing these solutions, focussing in partic-
ular on weighted variations of grounded extensions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
Argumentation, handling inconsistency, complexity

1. INTRODUCTION
Inconsistency between the beliefs and/or preferences of agents is
ubiquitous in everyday life, and yet coping with inconsistency re-
mains an essentially unsolved problem in artificial intelligence [8].
One of the key aims of argumentation research is to provide prin-
cipled techniques for handling inconsistency.

Although there are several different perspectives on argumenta-
tion (for a review see [9]), a common view is that argumentation
starts with a collection of statements, called arguments, which are
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related through the notions of support and attack. Typically, argu-
ment α1 supporting argument α2 would be grounds for accepting
α2 if one accepted α1, while argument α1 attacking argument α2

would be grounds for not accepting α2 if one accepted α1. Now,
if we allow arguments to attack one-another, then such collections
of arguments may be inconsistent; and the key question then be-
comes how to obtain a rationally justifiable position from such an
inconsistent argument set. Various solutions have been proposed
for this problem, such as admissible sets, preferred extensions, and
grounded extensions [13]. However, none of these solutions is
without drawbacks. A common situation is that, while a solution
may guaranteed to give an answer, the answer may be the empty
set. Conversely, several answers may be provided, with nothing to
distinguish between them. These drawbacks limit the value of these
solutions as argument analysis tools.

In part to overcome these difficulties, there is a trend in the liter-
ature on formalizations of argumentation towards considering the
strength of arguments. In this work, which goes back at least as far
as [16], it is recognized that not all arguments are equal in strength,
and that this needs to be taken into account when finding extensions
of a collection of arguments and counterarguments. We review this
literature in Section 3, and we conclude that whilst it is clear that
taking the strength of arguments into account is a valuable devel-
opment, it is not just the strength of the arguments, per se, that is
important. The strength of the attack that one argument (which may
itself be very strong) makes on another, can be weak.

In this paper, we introduce, formalise, and investigate a natural
extension of Dung’s well-known model of argument systems [13],
in which attacks between arguments are associated with a numeric
weight, indicating the relative strength of the attack, or, equiva-
lently, how reluctant we would be to disregard the attack. For ex-
ample, consider the following arguments:

α1: The house is in a good location, it is large enough for our
family and it is affordable: we should buy it.

α2: The house suffers from subsidence, which would be pro-
hibitively expensive to fix: we should not buy it.

These arguments are mutually attacking: both arguments are cred-
ulously accepted, neither is sceptically accepted, and the grounded
extension is empty. Thus the conventional analysis is not very use-
ful for this scenario. However, the representation we are using
surely misses a key point: the attacks are not of equal weight. We
would surely regard the attack of α2 on α1 as being much stronger
than the attack of α1 on α2, though both are very strong arguments
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in their own right. Our framework allows us to take these differing
weights of attack into consideration.

By using weights on attacks, we may be able to capture the rel-
ative strength of different attacks between arguments in a constel-
lation. The use of strength of attack is wide-spread in informal ar-
gumentation, and real-world information is often available to judge
the strength of the relations between arguments. To illustrate, in
order to classify a compound according to potential toxicity, the
U.S. Environmental Protection Agency needs to collect available
scientific evidence on the compound and related compounds, and
use this to construct arguments for and against a particular clas-
sification being applicable to the compound. Often, the evidence
available is incomplete, and perhaps inconsistent, and to address
this they systematically judge the result of attacks between argu-
ments based on the nature of the evidence used. So for example, in
their guidelines for the assessment of the health impacts of poten-
tial carcinogens, an argument for carcinogenicity that is based on
human epidemiological evidence is considered to outweigh argu-
ments against carcinogenicity that are based only on animal studies
[32, 17]. This example indicates both the naturalness of consider-
ing strength of attack and of the availability of appropriate infor-
mation for systematically evaluating the strength. Furthermore, in
general, as we will discuss in Section 4, there are various semantics
that we can apply to the weights assigned, and that these usefully
reflect some of the usages of attack strength in real-world informal
argumentation.

A key concept in our framework is the notion of an inconsistency
budget, and this also distinguishes our approach from other meth-
ods of attaching weights to arguments. The inconsistency budget
characterises how much inconsistency we are prepared to tolerate:
given an inconsistency budget β, we would be prepared to disre-
gard attacks up to a total cost of β. By increasing the inconsis-
tency budget, we get progressively more solutions, and this in turn
gives a preference ordering over solutions: we prefer solutions ob-
tained with a smaller inconsistency budget. This approach permits
a much finer-grained level of analysis of argument systems than
is typically possible, and gives useful, non-trivial solutions when
conventional (unweighted) argument systems have none. We be-
gin by reviewing Dung’s abstract argument systems, and present
the framework of weighted argument systems. We then investi-
gate solutions for weighted argument systems and the complexity
of computing such solutions, focussing in particular on weighted
variations of grounded extensions. Finally, we relate our work to
the most relevant examples of systems that incorporate strengths.

2. ABSTRACT ARGUMENT SYSTEMS
Since weighted argument systems and their associated solutions
generalise Dung’s well-known abstract argument systems model,
we begin by recalling some key concepts from this model. A Dung-
style abstract argument system is a pair D = 〈X, A〉 where X =
{α1, . . . , αk} is a finite set of arguments, and A ⊆ X × X is
a binary attack relation on X [13]. Given a set of arguments X,
let D(X) denote the set of all abstract argument systems over X,
i.e., D(X) = {〈X, A〉 : A ⊆ X × X}. Note that Dung’s model
does not assume any internal structure for arguments, or give any
concrete interpretation for them. The intended interpretation of the
attack relation in Dung’s model is also not completely defined, but
intuitively, (α1, α2) ∈ A means that if one accepts (in whatever
solution one considers) α1, then one should not accept α2. In other
words, it would be inconsistent to accept α2 if one accepted α1.

The next step is to define solutions for such argument systems.
A solution for an argument system (over a set of arguments X)
is a function f : D(X) → P(P(X)) i.e., a function that, given

function ge(X, A) returns a subset of X
1. in← out← ∅
2. while in �= X do
3. in← {α ∈ X : � ∃α′ ∈ X s.t. (α′, α) ∈ A}
4. out← {α ∈ X : ∃α′ ∈ in s.t. (α′, α) ∈ A}
5. X ← X \ out
6. A← A restricted to X
7. end-while
8. return X.

Figure 1: The function ge(· · · ).

〈X, A〉, will return a set of sets of arguments, such that each output
represents a “position” that is in some sense rationally justifiable.
Given D = 〈X, A〉 and S ⊆ X, we say that S is: consistent if
� ∃α1 ∈ S s.t. ∃α2 ∈ X and (α2, α1) ∈ A; internally consistent
(or conflict free) if � ∃α1 ∈ S s.t. ∃α2 ∈ S and (α2, α1) ∈ A;
defensive if ∀α1 ∈ X s.t. ∃α2 ∈ S and (α1, α2) ∈ A, ∃α3 ∈ S
for which (α3, α1); admissible if it is both internally consistent
and defensive; and a preferred extension if it is a maximal (wrt ⊆)
admissible set.

Consistency is the least problematic type of solution. However,
while every argument system contains a consistent set of argu-
ments, it may be that the only consistent set is the empty set. Such
trivial solutions are typically unhelpful. If we do not have a non-
empty consistent set of arguments, (which is the more general case),
then we might look at the admissible sets, and the preferred exten-
sions: a preferred extension is a maximal set of arguments that
is both internally consistent and defends itself against all attacks.
There will always be at least one preferred extension, although,
again, this may be the empty set [13, p.327]. Note that non-empty
preferred extensions may exist in argument systems for which the
only consistent set of arguments is the empty set, and so we can
usefully apply this solution in some situations where consistency is
not a useful analytical concept. We say an argument is credulously
accepted if it forms a member of at least one preferred extension,
and sceptically accepted if it is a member of every preferred exten-
sion. Clearly, sceptical acceptance represents a stronger solution
than credulous acceptance. Determining whether a given set of ar-
guments is consistent or admissible can be solved in polynomial
time; however, determining whether a set of arguments is a pre-
ferred extension is co-NP-complete, checking whether an argument
is credulously accepted is NP-complete, while checking whether an
argument is sceptically accepted is Πp

2-complete [11, 15].
The final solution we consider is the grounded extension [13,

p.328]. Roughly, the idea with grounded extensions is to iteratively
compute the arguments whose status is beyond question, by first
starting with arguments that have no attackers: we regard these
as being unquestionably “in”. Then, we eliminate arguments that
these “in” arguments attack: since they are attacked by an argu-
ment whose status is unquestioned, we regard them as “out”. We
then eliminate the “out” arguments, and iterate, until we reach no
change. The algorithm to compute the grounded extension of an ar-
gument system is given in Figure 1; basic properties of fixpoint al-
gorithms tell us this algorithm is guaranteed to terminate in polyno-
mial time. As a solution, grounded extensions are intuitively very
appealing; an argument system will always have a unique grounded
extension, although, again, this may be the empty set.

Notice that, while all of these solutions are guaranteed to give
some “answer”, it is possible that the only answer they give is the
empty set. This is a key limitation of conventional systems.
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3. TOWARDS ARGUMENT STRENGTH
There have been a number of proposals for extending Dung’s frame-
work in order to allow for more sophisticated modelling and anal-
ysis of conflicting information. A common theme among some of
these proposals is the observation that not all arguments are equal,
and that the relative strength of the arguments needs to be taken
into account somehow.

The first such extension of Dung’s work that we are aware of is
[27], where priorities between rules are used to resolve conflicts
([16] was not based on Dung). These priorities seem best inter-
preted as relating to the strength of the arguments — indeed the
strength of arguments are inferred from the strengths of the rules
from which the arguments are constructed. A similar notion is at
the heart of the argumentation systems in [1, 2], though here there
is a preference order over all an agent’s beliefs, and an argument
has a preference level equal to the minimum level of the beliefs
from which it is constructed.

Another early development of Dung’s proposal with weights was
Value-based Argumentation Frameworks (VAFs) [5]. In the VAF
approach, the strength of an argument depends on the social val-
ues that it advances, and determining whether the attack of one ar-
gument on another succeeds depends on the comparative strength
of the values advanced by the arguments concerned. Furthermore,
some arguments can be shown to be acceptable whatever the rela-
tive strengths of the values involved are. This means that the agents
involved in the argumentation can concur on the acceptance of ar-
guments, even when they differ as to which social values are more
important. One of the interesting questions that arise from this pro-
posal is whether the notion of argument strength can be generalised
from representing social values to representing other notions, and
if so in what ways can the strength be harnessed for analysing ar-
gument graphs.

In a sense, a more general approach to developing Dung’s pro-
posal is that of bipolar argumentation frameworks (BAFs) which
takes into account two kinds of interaction between arguments:
a positive interaction (an argument can help, support another ar-
gument) and a negative interaction (an argument can attack an-
other argument) [10]. The BAF approach incorporates a gradual
interaction-based valuation process in which the value of each ar-
gument α only depends on the value of the arguments which are
directly interacting with α in the argumentation system. Various
functions for this process are considered but each value obtained is
only a function of the original graph. As a result, no extra infor-
mation is made available with which to ascertain the strength of an
argument.

Recently, a game-theoretic approach, based on the minimax the-
orem, has been developed for determining the degree to which an
argument is acceptable given the counterarguments to it, and by
recursion the counterarguments to the counterarguments [19]. So
given an abstract argument system, this game-theoretic approach
calculates the strength of each argument in such a way that if an ar-
gument is attacked, then its strength falls, but if the attack is in turn
attacked, then the strength in the original argument rises. Further-
more, the process for this conforms to an interpretation of game
theory for argumentation. Whilst this gives an approach with in-
teresting properties, and appealing behaviour, the strength that is
calculated is a function of the original graph, and so like the BAF
approach, no extra information is made available with which to de-
termine the strength of each argument.

In another recent proposal for developing Dung’s model, extra
information representing the relative strength of attack is incorpo-
rated [18]. This is the only other approach that we are aware of
which distinguishes the strength of attack from the strength of an

argument. In this proposal, which we refer to as varied-strength at-
tacks (or VSA) approach, each arc is assigned a type, and there is a
partial ordering over the types. As a simple example, consider the
following argument graph conforming to Dung’s proposal, where
α1 is attacked by α2 which in turn is attacked by α3.

α3 → α2 → α1

Here, α3 defends the attack on α1, and as a result {α3, α1} is the
preferred, grounded and complete extension. Now, consider the
following VSA version of the graph, where the attack by α3 is of
type i and the attack by α2 is of type j.

α3 →i α2 →j α1

This gives us a finer grained range of defence depending on whether
type j is higher, or lower, or equally, ranked than type i, or incom-
parable with it. Furthermore, this allows for a finer definition of
acceptable extension that specifies the required level of the defence
of any argument in the extension. For instance, it can be insisted
in the VSA approach that every defence of an argument should be
by an attack that is stronger, so in the above graph that would mean
that the type of →i needs to be stronger than the type of →j in
order for {α3, α1} to be the preferred, grounded and complete ex-
tension.

From these proposals for developing Dung’s original approach,
there is a common theme that arguments, or attacks by arguments,
have variable strength. Some of these proposals are restricted to
determining that strength is based on the other arguments available
in the graph, together with their connectivity, and so the strength
of an argument is a function solely of the graph. Others, in par-
ticular the VAF approach [5] and the VSA approach [18], use ex-
plicit ranking information over the arguments or the attacks by ar-
guments. This ranking information requires extra information to be
given along with the set of arguments and the attack relation. So,
whilst there is gathering momentum for representing and reasoning
with the strength of arguments or their attacks, there is not a con-
sensus on the exact notion of argument strength or how it should
be used. Furthermore, for the explicit representation of extra infor-
mation pertaining to argument strength, we see that the use of ex-
plicit numerical weights is under-developed. So for these reasons,
we would like to present weighted argument systems as a valuable
new proposal that should further extend and clarify aspects of this
trend towards considering strength, in particular the explicit con-
sideration of strength of attack between arguments..

4. WEIGHTED ARGUMENT SYSTEMS
We now introduce our model of weighted argument systems, and
the key solutions we use throughout the remainder of the paper.
Weighted argument systems extend Dung-style abstract argument
systems by adding numeric weights to every edge in the attack
graph, intuitively corresponding to the strength of the attack, or
equivalently, how reluctant we would be to disregard it. Formally,
a weighted argument system is a triple W = 〈X, A, w〉 where
〈X, A〉 is a Dung-style abstract argument system, and w : A →
R> is a function assigning real valued weights1 to attacks. If X is
a set of arguments, then we let W(X) denote the set of weighted
argument systems over X. (In what follows, when we say simply
“argument system”, we mean “Dung-style (unweighted) abstract
argument system”.)

Notice that we require attacks to have a positive non-zero weight.
There may be cases where it is interesting to allow zero-weight
1We let R> denote the real numbers greater than 0, and R≥ denote the real numbers
greater than or equal to 0.
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attacks, in which case some of the analysis of this paper does not
go through. However, given our intuitive reading of weights (that
they indicate the strength of an attack) allowing 0-weight attacks is
perhaps counter-intuitive. For suppose by appealing to a particular
0-weight attack you were able to support some particular argument,
then an opponent could discard the attack at no cost. So, we will
assume attacks must have non-zero weight.

4.1 Where do Weights Come From?
We will not demand any specific interpretation of weights, and the
technical treatment of weighted argument systems in the remainder
of the paper does not require any such interpretation. However,
from the point of view of motivation, it is important to consider
this issue seriously (if only to convince the reader that weights are
not a purely technical device). Note that these three examples do
not exhaust the possibilities for the meaning of weights on attacks.
Weighted Majority Relations: In a multi-agent setting, one nat-
ural interpretation is that a weight represents the number of votes
in support of the attack. This interpretation makes a link between
argumentation and social choice theory – the theory of voting sys-
tems and collective decision making [3, 28].
Weights as Beliefs: Another interpretation would be to interpret
weights as subjective beliefs. For example, a weight of p ∈ (0, 1]
on the attack of argument α1 on argument α2 might be understood
as the belief that (a decision-maker considers) α2 is false when α1

is true. This belief could be modelled using probability, or any
other model of belief [24].
Weights as Ranking: A simple and obvious interpretation is to
use weights to rank the relative strength of attacks between argu-
ments. In other words, a higher weight denotes a stronger attack,
and so the absolute weight assigned to an attack is not important,
just the relative weight compared to the weights assigned to other
attacks. In this interpretation, we can consider subjective or ob-
jective criteria for ranking attacks. For instance, in the earlier ex-
ample concerning arguments about the potential carcinogenicity of
chemicals, arguments based on human epidemiological evidence
are more compelling (at least to the USA EPA) than those based on
animal studies, which are in turn more compelling than those based
on bioassay evidence [32]. We might assign a weight of (say) 100
to an attack between two arguments which are both based on the
same type of evidence, i.e., both human epidemiological studies,
or both animal studies, or both bioassays. In the case where the
attacking argument is based on human epidemiological studies and
the attacked argument on animal studies, we may assign a weight
of 125. In the case where the attacking argument is based on human
epidemiological studies and the attacked argument on bioassay ex-
periments, we may assign a weight of 150. For attacks between two
such arguments in the reverse directions, we could assign weights
of 75 and 50 (respectively). As mentioned, the absolute numbers
here are not important; rather the weights are aiming to capture the
relative degree of persuasive compulsion which a decision-maker
believes when considering each type of attack. Clearly this inter-
pretation has scope for a more finely-grained allocation of weights,
for example to distinguish between attacks by arguments based on
studies of different species of animals, or by arguments based on
experimental studies with different levels of statistical power.

4.2 Inconsistency Budgets and β-Solutions
A key idea in what follows is that of an inconsistency budget, β ∈
R≥, which we use to characterise how much inconsistency we are
prepared to tolerate. The intended interpretation is that, given an
inconsistency budget β, we would be prepared to disregard attacks

Figure 2: Weighted argument system W1 from Example 1.

up to a total weight of β. Conventional abstract argument systems
implicitly assume an inconsistency budget of 0. However, by relax-
ing this constraint, allowing larger inconsistency budgets, we can
obtain progressively more solutions from an argument system.

To make this idea formal, we first define a function sub(· · · ),
which takes an attack relation A, weight function w : A → R>,
and inconsistency budget β ∈ R≥, and returns the set of sub-graphs
R of A such that the edges in R sum to no more than β:

sub(A, w, β) = {R : R ⊆ A &
X

e∈R

w(e) ≤ β}.

We now use inconsistency budgets to introduce weighted variants
of the solutions introduced for abstract argument systems, above.
Given a weighted argument system 〈X, A, w〉, a solution f : D(X) →
P(P(X)), and a set of arguments S ⊆ X, we say that S is β-f if
∃R ∈ sub(A, w, β) such that S ∈ f(〈X, A\R〉). So, for example,
S is β-admissible if ∃R ∈ sub(A,w, β) such that S is admissible
in the argument system 〈X, A \ R〉.

EXAMPLE 1. Consider the weighted argument system W1, il-
lustrated in Figure 2. The only consistent set of arguments in W1

is the empty set; however, {α5} is 1-consistent, since we can delete
the edge (α4, α5) with β = 1. If β = 2, we have two consistent
sets: {α4} and {α5}. Table 1 shows consistent sets (and other
β-solutions) for some increasing values of β.

Now, weighted argument systems straightforwardly generalise
unweighted argument systems: each unweighted solution f is di-
rectly realised by the weighted solution 0-f . However, weighted
solutions have a number of advantages over unweighted solutions.
Consider for example the notion of consistency. We know that in
unweighted systems, there is always a consistent set, but this could
be empty. As we noted above, this may be undesirable – if an
argument system only has a trivial solution, then we obtain no in-
formation from it. In contrast, weighted argument systems have the
following, (readily proved), property:

PROPOSITION 1. Let W = 〈X, A, w〉 be a weighted abstract
argument system. For every set of arguments S ⊆ X, ∃β such that
S is contained in a β-consistent set in W .

Thus, intuitively, every set of arguments is consistent at some cost,
and the cost required to make a set of arguments consistent imme-
diately gives us a preference ordering over sets of arguments: we
prefer sets of arguments that require a smaller inconsistency bud-
get. Notice that a similar observation holds true for admissibility,
preferred extensions, credulous acceptance, and sceptical accep-
tance.

Now, consider how grounded extensions are generalised within
weighted systems. The first observation to make is that while in un-
weighted argument systems the grounded extension is unique, this
will not necessarily be the case in weighted argument systems: in
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β =? β-consistent sets β-preferred extensions β-grounded extensions
0 {∅} {{α1, α2, α4, α6}, {α3, α5, α7, α8}} {∅}
1 {∅, {α5}} {{α1, α2, α4, α6}, {α3, α5, α7, α8}} {∅, {α3, α5, α7, α8}}
2 {∅, {α4}, {α5}} {{α1, α2, α4, α6}, {α3, α5, α7, α8}} {∅, {α3, α5, α7, α8}, {α1, α2, α4, α6}}
3 {∅, {α4}, {α5}, {α4, α5}} {{α1, α2, α4, α6}, {α3, α5, α7, α8}, {∅, {α3, α5, α7, α8}, {α1, α2, α4, α6},

{α1, α2, α4, α5, α7, α8}} {α1, α2, α4, α5, α7, α8}}

Table 1: Solutions for W1, for some increasing values of β.

weighted systems there may be many β-grounded extensions. For-
mally, let wge(X,A, w, β) denote the set of β-grounded exten-
sions of the weighted argument system 〈X, A, w〉 (recall that the
function ge(· · · ), which computes the unweighted grounded ex-
tension, is defined in Figure 1):

wge(X,A, w, β) = {ge(X, A \ R) : R ∈ sub(A,w, β)}.

Table 1 shows β-grounded extensions for some increasing values
of β for system W1 of Figure 2.

We conclude this section with another possible interpretation for
weights, and an associated example.

EXAMPLE 2. Suppose we interpret the weight on an edge (αi, αj)
as a costed risk. By this, we mean that the weight of (αi, αj) is the
cost/penalty that is incurred if αi is true, normalized by the proba-
bility that αi actually is true. To illustrate, consider the following
arguments where α2 attacks α1, α3 attacks α2, and α4 attacks α2.

(α1) The patient needs bypass surgery now
(α2) The patient will die in theatre
(α3) The patient will die within a week without surgery
(α4) The patient will have impaired heart functionality

Assume a probability function p over arguments, so p(α) is the
probability that α is true. Now, suppose p is such that p(α2) = 0.5,
p(α3) = 0.9, and p(α4) = 1. Let the penalty of α2 (respec-
tively α3 and α4) being true be 100 (resp. 99.9 and 5). Then
w(α2, α1) = 50, w(α3, α2) = 89.9, and w(α4, α2) = 5. For
all β < 94.9, α1 is in every β-grounded extension. This seems
reasonable, since α3 has a sufficiently high penalty and probability
of occurrence to defeat α2 hence allow α1 to be undefeated.

Now, let us change α2 to α′
2 and α3 to α′

3, with p giving p(α′
2) =

0.9 and p(α′
3) = 0.1, and let the penalty of α′

2 be the same as α2

and the penalty of α′
3 be the same as α3. Then w(α′

2, α1) = 90,
and w(α′

3, α2) = 10, and hence, for any β ≥ 15, α1 there is some
β-grounded extension not containing α1. This also is reasonable,
since if we are prepared to overlook some costed risk, then we are
safe against the much greater costed risk that comes from α2. In a
sense, via inconsistency tolerance, we are trading one costed risk
against another.

From this example, we can see how the uncertainty and poten-
tial negative ramifications of counterarguments can be intuitively
captured using weighted argument systems.

5. COMPLEXITY OF SOLUTIONS
An obvious question now arises. Prima facie, it appears that weighted
argument systems offer some additional expressive power over un-
weighted argument systems. So, does this apparently additional
power come with some additional computational cost? The β ver-
sions of the decision problems for consistency, admissibility, check-
ing preferred extensions, sceptical, and credulous acceptance are in
fact no harder (although of course no easier) than the corresponding
unweighted decision problems – these results are easy to establish.

However, the story for β-grounded extensions is more complicated,
since there may be multiple β-grounded extensions. Since there are
multiple β-grounded extensions, we can consider credulous and
sceptical variations of the problem, as with preferred extensions.
Consider the credulous case first:

PROPOSITION 2. Given weighted argument system 〈X, A, w〉,
inconsistency budget β, and argument α ∈ X, the problem of
checking whether ∃S ∈ wge(X,A,w, β) such that α ∈ S is NP-
complete. The problem remains NP-complete even if the attack re-
lation is planar and/or tripartite and/or has no argument which is
attacked by more than two others.

PROOF. For membership, a conventional “guess and check” ap-
proach suffices. For NP-hardness, we reduce from 3-SAT. Given
an instance ϕ(Zn) of 3-SAT with m clauses Cj over propositional
variables Zn = {z1, . . . , zn}, form the weighted argument sys-
tem 〈Xϕ, Aϕ, wϕ〉, illustrated in Figure 4. Specifically, Xϕ has
3n +m +1 arguments: an argument Cj for each clause of ϕ(Zn);
arguments {zi,¬zi, ui} for each variable of Zn, and an argument
ϕ. The relationship, Aϕ, contains attacks (Cj , ϕ) for each clause
of ϕ, (zi,¬zi), (¬zi, zi), (zi, ui), (¬zi, ui), and (ui, ϕ) for each
1 ≤ i ≤ n. Finally, Aϕ contains an attack (zi, Cj) if zi is a literal
in Cj , and (¬zi, Cj) if ¬zi occurs in Cj . The weighting function
wϕ assigns cost 1 to each of the attacks {(zi,¬zi), (¬zi, zi)} and
cost n + 1 to all remaining attacks. To complete the instance the
available budget is set to n and the argument of interest to ϕ. We
claim that ϕ ∈ S for some S ∈ wge(Xϕ, Aϕ, wϕ, n) if and only
if ϕ(Zn) is satisfiable. We first note that ϕ is credulously accepted
in the (unweighted) system 〈Xϕ, Aϕ〉 if and only if ϕ(Zn) is sat-
isfiable.2 We deduce that if ϕ(Zn) is satisfied by an instantiation
〈a1, a2, . . . , an〉 of Zn then ϕ is a member of the grounded ex-
tension of the acyclic system 〈Xϕ, Aϕ \ B〉 in which B contains
(¬zi, zi) (if ai = �) and (zi,¬zi) (if ai = ⊥). Noting that B
has total weight n, and that the subset {y1, y2, . . . , yn} in which
yi = zi (if ai = �) and ¬zi (if ai = ⊥) is unattacked, it follows
that from ϕ(Zn) satisfiable we may identify a suitable cost n set of
attacks, B, to yield ϕ ∈ ge(Xϕ, Aϕ \ B)

On the other hand, suppose that ϕ ∈ S for some S belonging to
wge(Xϕ, Aϕ, wϕ, n). Consider the set of attacks, B, eliminated
from Aϕ in order to form the system 〈Xϕ, Aϕ\Bϕ〉 with grounded
extension S. Since ϕ ∈ S, exactly one of (zi,¬zi) and (¬zi, zi)
must be in B for every i. Otherwise, if for some i, neither attack is
in B then {zi,¬zi}∩S = ∅, and thus ϕ has no defence to the attack
by ui, contradicting ϕ ∈ S; similarly if both attacks are in B then,
from the fact B has total cost at most n, for some other variable,
zk, both (zk,¬zk) and (¬zk, zk) would be in Aϕ \ B. In total,
from S in wge(Xϕ, Aϕ, wϕ, n) and ϕ ∈ S for each 1 ≤ i ≤ n
we identify exactly one unattacked argument, yi from {zi,¬zi},
so that S = {ϕ, y1, . . . , yn}. That the instantiation zi = � (if

2This follows from [11] which uses a similar construction for which the ui arguments
and associated attacks do not occur.
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Figure 3: The reduction used in Proposition 2.

yi = zi) and zi = ⊥ (if y = ¬zi) satisfies ϕ(Zn) is immediate
from [11].

The remaining cases (for planar, tripartite graphs, etc.) can be
derived from the reductions from 3-SAT given in [14].

Now consider the “sceptical” version of this problem.

PROPOSITION 3. Given weighted argument system 〈X, A,w〉,
inconsistency budget β, and argument α ∈ X, the problem of
checking whether, ∀Y ∈ wge(X,A, w, β), we have α ∈ Y is
co-NP-complete.

PROOF. Membership of co-NP is immediate from the algorithm
which checks for every B ⊆ A that if

P

e∈B w(e) ≤ β then
x ∈ ge(X,A \ B). For co-NP-hardness, we use a reduction from
UNSAT, assuming w.l.o.g. that the problem instance is presented in
CNF. Given an m-clause instance ϕ(Zn) of UNSAT, we construct a
weighted argument system 〈Xϕ, Aϕ, wϕ〉 as follows. The set Xϕ

contains 4n+m+3 arguments: {ϕ, ψ, χ}; {zi, ¬zi, ui, vi : 1 ≤
i ≤ n}; and {Cj : 1 ≤ j ≤ m}. The attack set Aϕ comprises:
{(ϕ, ψ), (χ, ϕ)}; {(vi, zi), (vi,¬zi), (zi, ui), (¬zi, ui), (ui, ϕ)}
for each 1 ≤ i ≤ n; {(Cj , ϕ) : 1 ≤ j ≤ m}; {(zi, Cj) : zi ∈
Cj} and {(¬zi, Cj) : ¬zi ∈ Cj} The attacks are weighted so that
wϕ((χ, ϕ)) = 1; wϕ((vi, zi)) = wϕ((vi,¬zi)) = 1; all remain-
ing attacks have weight n + 2. The instance is completed using ψ
as the relevant argument and an inconsistency tolerance of n + 1.
(See Figure 4 for an illustration of the construction.)

Now, suppose that ϕ(Zn) is satisfied by an instantiation α =
〈a1, . . . , an〉 of Zn. Consider the subset Bα of Aϕ given by {(χ, ϕ)}
together with ∪{(vi, zi) : ai = �} ∪ {(vi,¬zi) : ai =
⊥}. The weight of Bα is n + 1 and (since α satisfies ϕ(Zn)
it follows that ge(Xϕ, Aϕ \ Bα) contains exactly the arguments
{χ, ϕ} ∪ {v1, . . . , vn} ∪ {zi : ai = �} ∪ {¬zi : ai = ⊥}.
Hence ψ �∈ ge(Xϕ, Aϕ \ Bα) as required.

Conversely, suppose 〈〈Xϕ, Aϕ, w〉, ψ, n + 1〉 is not accepted.
We show that we may construct a satisfying instantiation of ϕ(Zn)
in such cases. Consider B ⊆ Aϕ of cost at most n + 1 for which
ψ �∈ ge(Xϕ, Aϕ \ B). It must be the case that (χ, ϕ) ∈ B for
otherwise the attack by ϕ on ψ is defended so that ψ would be-
long to the grounded extension. The remaining elements of B
must form a subset of the attacks {(vi, zi), (vi,¬zi)} (since all
remaining attacks are too costly). Furthermore, exactly one of
{(vi, zi), (vi,¬zi)} must belong to B for each 1 ≤ i ≤ n: oth-
erwise, some ui will be in ge(Xϕ, Aϕ \ B), thus providing a de-
fence to the attack on ψ by ϕ and contradicting the assumption

Figure 4: The reduction used in Proposition 3.

ψ �∈ ge(Xϕ, Aϕ \ B). Now consider the instantiation, α, with
ai = � if (vi, zi) ∈ B, ai = ⊥ if (vi,¬zi) ∈ B. We now see that
α must satisfy ϕ(Zn): in order for ψ �∈ ge(Xϕ, Aϕ \ B) to hold,
it must be the case that ϕ ∈ ge((Xϕ, Aϕ \ B), i.e. each of the
Cj attacks on ϕ must be counterattacked by one of its constituent
literal (arguments) yi. Noting that vi is always in ge(Xϕ, Aϕ \B),
if ai = � clauses containing ¬zi cannot be attacked (since the
attack (vi,¬zi) is still present). It follows that the instantiation,
α, attacks each clause so that ϕ ∈ ge(Xϕ, Aϕ \ B). In sum, if
〈〈Xϕ, Aϕ, w〉, ψ, n + 1〉 is not accepted then ϕ(Zn) is satisfiable,
so completing the proof.

Note that in some cases, considering sceptical grounded exten-
sions is of limited value. Let unch(X, A) denote the set of argu-
ments in X that are unchallenged (have no attackers) according to
A. Then we have:

PROPOSITION 4. Let 〈X, A, w〉 be a weighted argument sys-
tem and β be an inconsistency budget. Then unch(X, A) �= ∅ iff
(
T

Y ∈wge(X,A,w,β) Y ) �= ∅.

6. HOW MUCH INCONSISTENCY DO WE
NEED?

Another obvious question is now raised. Suppose we have a weighted
argument system 〈X, A,w〉 and a set of arguments S. Then what
is the smallest amount of inconsistency would we need to tolerate
in order to make S a solution? Now, when considering consistency
and admissibility, the answer is easy: we know exactly which at-
tacks we would have to disregard to make a set of arguments admis-
sible or consistent — we have no choice in the matter. However,
when considering grounded extensions, the answer is not so easy.
As we saw above, there may be multiple ways of getting a set of ar-
guments into a weighted extension, each with potentially different
costs; we are thus typically interested in solving the problem:

minimise β
∗ s.t. ∃Y ∈ wge(X, A,w, β

∗) : S ⊆ Y (1)

What can we say about (1)? First, consider the following prob-
lem. We are given a weighted argument system 〈X, A, w〉 and an
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inconsistency budget β ∈ R≥, and asked whether β is minimal,
i.e., whether ∀β′ < β and ∀Y ∈ wge(X,A, w, β′), we have that
S �⊆ Y . (This problem does not require that S is contained in a
some β-grounded extension of 〈X, A,w〉.)

PROPOSITION 5. Given a weighted argument system 〈X, A,w〉,
set of arguments S ⊆ X, and inconsistency budget β, checking
whether β is minimal w.r.t. 〈X, A, w〉 and S is co-NP-complete.

PROOF. Consider the complement problem, i.e., the problem of
checking whether ∃β′ < β and ∃Y ∈ wge(X,A,w, β′) such
that S ⊆ Y . Membership in NP is immediate. For NP-hardness,
we can reduce SAT, using essentially the same construction for the
weighted argument system as Proposition 2; we ask whether n + 1
is not minimal for argument set {ϕ}.

This leads very naturally to the following question: is β the small-
est inconsistency budget required to ensure that S is contained in
some β-grounded extension. We refer to this problem as checking
whether β is the minimal budget for S.

PROPOSITION 6. Given a weighted argument system 〈X, A,w〉,
set of arguments S ⊆ X, and inconsistency budget β, checking
whether β is the minimal budget for S is Dp-complete.

PROOF. For membership of Dp, we must exhibit two languages
L1 and L2 such that L1 ∈ NP, L2 ∈ co-NP, and L1 ∩L2 is the set
of instances accepted by the minimal budget problem. Language
L1 is given by Proposition 2, while language L2 is given by Propo-
sition 5. For hardness, we reduce the Critical Variable Problem
(CVP) [7, p.66]. An instance of CVP is given by a propositional for-
mula ϕ in CNF, and a variable z from ϕ. We are asked if, under the
valuation z = � the formula ϕ is satisfiable, while under the val-
uation z = ⊥ it is unsatisfiable. We proceed to create in instance
of the minimal budget problem by using essentially the same con-
struction as Proposition 2, except that the attack (z,¬z) is given
a weight of 0.5. Now, in the resulting system, n is the minimal
budget for {ϕ} iff z is a critical variable in ϕ.

We noted above that one way of deriving a preference order over
sets of arguments is to consider the minimal inconsistency budget
required to make a set of arguments a solution. A related idea is to
count the number of weighted extensions that an argument set ap-
pears in, for a given budget: we prefer argument sets that appear in
more weighted grounded extensions. Formally, we denote the rank
of an argument set S, given a weighted argument system 〈X, A, w〉
and inconsistency budget β, by ρ(S,X, A, w, β):

ρ(S, X, A, w, β) = |{Y ∈ wge(X,A,w, β) : S ⊆ Y }|.

PROPOSITION 7. Given weighted argument system 〈X, A,w〉,
argument set S ⊆ X, and inconsistency budget β, computing
ρ(S, X, A, w, β) is #P-complete.

PROOF. (Outline) For membership, consider a non-deterministic
Turing machine that guesses some subset R of A, and verifies that
both

P

e∈R w(e) ≤ β and S ⊆ ge(X,A \ R). The number of
accepting computations of this machine will be ρ(S,X, A, w, β).
For hardness, we can reduce #SAT [23, p.439], using the construc-
tion of Proposition 2. It is straightforward to see that the reduction
is parsimonious.

7. RELATED WORK
We have already described some of the work that is most closely
related to ours in the brief survey of Section 3 but there is additional

work that should be mentioned and which does not fit into the broad
historical sweep we were describing there.

To begin, there are other interesting developments of abstract ar-
gumentation such as a framework for defeasible reasoning about
preferences that provides a context dependent mechanism for de-
termining which argument is preferred to which [20, 21]. This also
offers a valuable solution to dealing with multiple extensions, but
conceptually and formally the proposal is complementary to ours.
Also of interest are the proposals for introducing information about
how the audience views each argument [6].

The framework we present is also clearly related to preference-
based argument systems such as that described in [1]. However,
while our approach disregards attacks whose combined weight is
less than the inconsistency budget, systems such as that in [1] dis-
regard all attacks whose individual weight is below that of the ar-
gument being attacked. This is broadly equivalent, in our terms,
to setting the inconsistency budget to the weight of the argument
being attacked, and taking the combined weights of the attacking
arguments to be the maximum of the weights rather than the sum.
Our work is also related to work on possibilistic truth-maintenance
systems [12] where assumptions are weighted, conclusions based
on the assumptions inherit the weights, and consistent “environ-
ments” are established. What is particularly reminsicent about the
work in [12] is that, again in our terms, it makes use of inconsis-
tency budget — this is exactly the weight with which the incon-
sistency ⊥ can be inferred. Anything that can be inferred with a
greater weight than ⊥ is then taken to hold, anything with a lesser
weight is taken to be unreliable, which is broadly the effect of the
inconsistency budget in our work.

Finally, we should point out that there has been a good deal
of work on incorporating numerical and non-numerical strengths
(though not strengths of attack) into argumentation systems that
are not based on Dung’s work. [16], to take the earliest example,
describes the use of probability measures and beliefs in the sense
of Shafer’s theory of evidence [29]. [25] presents an argumentation
system that uses weights which are qualitative abstractions of prob-
ability values, while in [31] the weights are infinitesimal probabili-
ties in the sense of [30]. There is also much work on combinations
of logic and probability such as [4], [22] and [26], which, while
they don’t explictly take the form of argumentation, have much in
common with it.

8. DISCUSSION AND CONCLUSIONS
Our proposal in this paper, namely weighted argument systems
(WAS), is a further contribution to the development of formalisms
for abstract argumentation that started with the seminal work by
Dung. The WAS approach uses a numerical weight on the attacks
between arguments, as do the proposals based on game theory [19]
and bipolar argumentation [10], but those proposals are restricted
to determining the strength based on the other arguments available
in the graph, together with connectively, and so the strength of an
argument is a function solely of the graph. In contrast, our pro-
posal allows for the weight to be given as an extra piece of infor-
mation. There are other proposals that allow for extra information
to be given about the strength of arguments in a constellation, in
particular the VAF approach [5] and the VSA approach [18], but
they are restricted to using explicit ranking information over the
arguments or the attacks by arguments, rather than numerical in-
formation. By introducing numerical weights, we can simplify and
generalize some of the underlying conceptualization of handling
the strength of attackss, and furthermore, we can introduce the in-
teresting and potentially valuable idea of inconsistency budgets for
finer grained analysis of inconsistent information.
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Several possibilities suggest themselves for future research: to
investigate specific interpretations for weights; another is to inves-
tigate the framework experimentally, to obtain a better understand-
ing of the way the approach behaves. One obvious issue here is
to look for “discontinuities” as the inconsistency budget grows, i.e.
points where large increases in the number of accepted arguments
occur for only a small increase in the inconsistency budget. A third
avenue is to investigate the question of the exact relationship be-
tween the argument strength and the strength of attacks.
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